"""
FP-GraphMiner - A Fast Frequent Pattern Mining Algorithm for Network Graphs
A novel Frequent Pattern Graph Mining algorithm, FP-GraphMiner, that compactly
represents a set of network graphs as a Frequent Pattern Graph (or FP-Graph).
This graph can be used to efficiently mine frequent subgraphs including maximal
frequent subgraphs and maximum common subgraphs.
URL: https://www.researchgate.net/publication/235255851
"""
edge_array = [
['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'be-e6', 'bh-e12', 'cd-e2', 'ce-e4',
'de-e1', 'df-e8', 'dg-e5', 'dh-e10', 'ef-e3', 'eg-e2', 'fg-e6', 'gh-e6', 'hi-e3'],
['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'be-e6', 'cd-e2', 'de-e1', 'df-e8',
'ef-e3', 'eg-e2', 'fg-e6'],
['ab-e1', 'ac-e3', 'bc-e4', 'bd-e2', 'de-e1', 'df-e8', 'dg-e5', 'ef-e3', 'eg-e2',
'eh-e12', 'fg-e6', 'fh-e10', 'gh-e6'],
['ab-e1', 'ac-e3', 'bc-e4', 'bd-e2', 'bh-e12', 'cd-e2', 'df-e8', 'dh-e10'],
['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'cd-e2', 'ce-e4', 'de-e1', 'df-e8',
'dg-e5', 'ef-e3', 'eg-e2', 'fg-e6']
]
def get_distinct_edge(edge_array):
"""
Return Distinct edges from edge array of multiple graphs
>>> sorted(get_distinct_edge(edge_array))
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
"""
distinct_edge = set()
for row in edge_array:
for item in row:
distinct_edge.add(item[0])
return list(distinct_edge)
def get_bitcode(edge_array, distinct_edge):
"""
Return bitcode of distinct_edge
"""
bitcode = ["0"] * len(edge_array)
for i, row in enumerate(edge_array):
for item in row:
if distinct_edge in item[0]:
bitcode[i] = "1"
break
return "".join(bitcode)
def get_frequency_table(edge_array):
"""
Returns Frequency Table
"""
distinct_edge = get_distinct_edge(edge_array)
frequency_table = dict()
for item in distinct_edge:
bit = get_bitcode(edge_array, item)
s = bit.count("1")
frequency_table[item] = [s, bit]
sorted_frequency_table = [
[k, v[0], v[1]]
for k, v in sorted(frequency_table.items(), key=lambda v: v[1][0], reverse=True)
]
return sorted_frequency_table
def get_nodes(frequency_table):
"""
Returns nodes
format nodes={bitcode:edges that represent the bitcode}
>>> get_nodes([['ab', 5, '11111'], ['ac', 5, '11111'], ['df', 5, '11111'],
... ['bd', 5, '11111'], ['bc', 5, '11111']])
{'11111': ['ab', 'ac', 'df', 'bd', 'bc']}
"""
nodes = {}
for i, item in enumerate(frequency_table):
nodes.setdefault(item[2], []).append(item[0])
return nodes
def get_cluster(nodes):
"""
Returns cluster
format cluster:{WT(bitcode):nodes with same WT}
"""
cluster = {}
for key, value in nodes.items():
cluster.setdefault(key.count("1"), {})[key] = value
return cluster
def get_support(cluster):
"""
Returns support
>>> get_support({5: {'11111': ['ab', 'ac', 'df', 'bd', 'bc']},
... 4: {'11101': ['ef', 'eg', 'de', 'fg'], '11011': ['cd']},
... 3: {'11001': ['ad'], '10101': ['dg']},
... 2: {'10010': ['dh', 'bh'], '11000': ['be'], '10100': ['gh'],
... '10001': ['ce']},
... 1: {'00100': ['fh', 'eh'], '10000': ['hi']}})
[100.0, 80.0, 60.0, 40.0, 20.0]
"""
return [i * 100 / len(cluster) for i in cluster]
def print_all() -> None:
print("\nNodes\n")
for key, value in nodes.items():
print(key, value)
print("\nSupport\n")
print(support)
print("\n Cluster \n")
for key, value in sorted(cluster.items(), reverse=True):
print(key, value)
print("\n Graph\n")
for key, value in graph.items():
print(key, value)
print("\n Edge List of Frequent subgraphs \n")
for edge_list in freq_subgraph_edge_list:
print(edge_list)
def create_edge(nodes, graph, cluster, c1):
"""
create edge between the nodes
"""
for i in cluster[c1].keys():
count = 0
c2 = c1 + 1
while c2 < max(cluster.keys()):
for j in cluster[c2].keys():
"""
creates edge only if the condition satisfies
"""
if int(i, 2) & int(j, 2) == int(i, 2):
if tuple(nodes[i]) in graph:
graph[tuple(nodes[i])].append(nodes[j])
else:
graph[tuple(nodes[i])] = [nodes[j]]
count += 1
if count == 0:
c2 = c2 + 1
else:
break
def construct_graph(cluster, nodes):
X = cluster[max(cluster.keys())]
cluster[max(cluster.keys()) + 1] = "Header"
graph = {}
for i in X:
if tuple(["Header"]) in graph:
graph[tuple(["Header"])].append(X[i])
else:
graph[tuple(["Header"])] = [X[i]]
for i in X:
graph[tuple(X[i])] = [["Header"]]
i = 1
while i < max(cluster) - 1:
create_edge(nodes, graph, cluster, i)
i = i + 1
return graph
def myDFS(graph, start, end, path=[]):
"""
find different DFS walk from given node to Header node
"""
path = path + [start]
if start == end:
paths.append(path)
for node in graph[start]:
if tuple(node) not in path:
myDFS(graph, tuple(node), end, path)
def find_freq_subgraph_given_support(s, cluster, graph):
"""
find edges of multiple frequent subgraphs
"""
k = int(s / 100 * (len(cluster) - 1))
for i in cluster[k].keys():
myDFS(graph, tuple(cluster[k][i]), tuple(["Header"]))
def freq_subgraphs_edge_list(paths):
"""
returns Edge list for frequent subgraphs
"""
freq_sub_EL = []
for edges in paths:
EL = []
for j in range(len(edges) - 1):
temp = list(edges[j])
for e in temp:
edge = (e[0], e[1])
EL.append(edge)
freq_sub_EL.append(EL)
return freq_sub_EL
def preprocess(edge_array):
"""
Preprocess the edge array
>>> preprocess([['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'be-e6', 'bh-e12',
... 'cd-e2', 'ce-e4', 'de-e1', 'df-e8', 'dg-e5', 'dh-e10', 'ef-e3',
... 'eg-e2', 'fg-e6', 'gh-e6', 'hi-e3']])
"""
for i in range(len(edge_array)):
for j in range(len(edge_array[i])):
t = edge_array[i][j].split("-")
edge_array[i][j] = t
if __name__ == "__main__":
preprocess(edge_array)
frequency_table = get_frequency_table(edge_array)
nodes = get_nodes(frequency_table)
cluster = get_cluster(nodes)
support = get_support(cluster)
graph = construct_graph(cluster, nodes)
find_freq_subgraph_given_support(60, cluster, graph)
paths = []
freq_subgraph_edge_list = freq_subgraphs_edge_list(paths)
print_all()