"""
This is a pure Python implementation of the merge-insertion sort algorithm
Source: https://en.wikipedia.org/wiki/Merge-insertion_sort
For doctests run following command:
python3 -m doctest -v merge_insertion_sort.py
or
python -m doctest -v merge_insertion_sort.py
For manual testing run:
python3 merge_insertion_sort.py
"""
from __future__ import annotations
def merge_insertion_sort(collection: list[int]) -> list[int]:
"""Pure implementation of merge-insertion sort algorithm in Python
:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending
Examples:
>>> merge_insertion_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]
>>> merge_insertion_sort([99])
[99]
>>> merge_insertion_sort([-2, -5, -45])
[-45, -5, -2]
"""
def binary_search_insertion(sorted_list, item):
left = 0
right = len(sorted_list) - 1
while left <= right:
middle = (left + right) // 2
if left == right:
if sorted_list[middle] < item:
left = middle + 1
break
elif sorted_list[middle] < item:
left = middle + 1
else:
right = middle - 1
sorted_list.insert(left, item)
return sorted_list
def sortlist_2d(list_2d):
def merge(left, right):
result = []
while left and right:
if left[0][0] < right[0][0]:
result.append(left.pop(0))
else:
result.append(right.pop(0))
return result + left + right
length = len(list_2d)
if length <= 1:
return list_2d
middle = length // 2
return merge(sortlist_2d(list_2d[:middle]), sortlist_2d(list_2d[middle:]))
if len(collection) <= 1:
return collection
"""
Group the items into two pairs, and leave one element if there is a last odd item.
Example: [999, 100, 75, 40, 10000]
-> [999, 100], [75, 40]. Leave 10000.
"""
two_paired_list = []
has_last_odd_item = False
for i in range(0, len(collection), 2):
if i == len(collection) - 1:
has_last_odd_item = True
else:
"""
Sort two-pairs in each groups.
Example: [999, 100], [75, 40]
-> [100, 999], [40, 75]
"""
if collection[i] < collection[i + 1]:
two_paired_list.append([collection[i], collection[i + 1]])
else:
two_paired_list.append([collection[i + 1], collection[i]])
"""
Sort two_paired_list.
Example: [100, 999], [40, 75]
-> [40, 75], [100, 999]
"""
sorted_list_2d = sortlist_2d(two_paired_list)
"""
40 < 100 is sure because it has already been sorted.
Generate the sorted_list of them so that you can avoid unnecessary comparison.
Example:
group0 group1
40 100
75 999
->
group0 group1
[40, 100]
75 999
"""
result = [i[0] for i in sorted_list_2d]
"""
100 < 999 is sure because it has already been sorted.
Put 999 in last of the sorted_list so that you can avoid unnecessary comparison.
Example:
group0 group1
[40, 100]
75 999
->
group0 group1
[40, 100, 999]
75
"""
result.append(sorted_list_2d[-1][1])
"""
Insert the last odd item left if there is.
Example:
group0 group1
[40, 100, 999]
75
->
group0 group1
[40, 100, 999, 10000]
75
"""
if has_last_odd_item:
pivot = collection[-1]
result = binary_search_insertion(result, pivot)
"""
Insert the remaining items.
In this case, 40 < 75 is sure because it has already been sorted.
Therefore, you only need to insert 75 into [100, 999, 10000],
so that you can avoid unnecessary comparison.
Example:
group0 group1
[40, 100, 999, 10000]
^ You don't need to compare with this as 40 < 75 is already sure.
75
->
[40, 75, 100, 999, 10000]
"""
is_last_odd_item_inserted_before_this_index = False
for i in range(len(sorted_list_2d) - 1):
if result[i] == collection[-i]:
is_last_odd_item_inserted_before_this_index = True
pivot = sorted_list_2d[i][1]
if is_last_odd_item_inserted_before_this_index:
result = result[: i + 2] + binary_search_insertion(result[i + 2 :], pivot)
else:
result = result[: i + 1] + binary_search_insertion(result[i + 1 :], pivot)
return result
if __name__ == "__main__":
user_input = input("Enter numbers separated by a comma:\n").strip()
unsorted = [int(item) for item in user_input.split(",")]
print(merge_insertion_sort(unsorted))