"""
Implementation of sequential minimal optimization (SMO) for support vector machines
(SVM).
Sequential minimal optimization (SMO) is an algorithm for solving the quadratic
programming (QP) problem that arises during the training of support vector
machines.
It was invented by John Platt in 1998.
Input:
0: type: numpy.ndarray.
1: first column of ndarray must be tags of samples, must be 1 or -1.
2: rows of ndarray represent samples.
Usage:
Command:
python3 sequential_minimum_optimization.py
Code:
from sequential_minimum_optimization import SmoSVM, Kernel
kernel = Kernel(kernel='poly', degree=3., coef0=1., gamma=0.5)
init_alphas = np.zeros(train.shape[0])
SVM = SmoSVM(train=train, alpha_list=init_alphas, kernel_func=kernel, cost=0.4,
b=0.0, tolerance=0.001)
SVM.fit()
predict = SVM.predict(test_samples)
Reference:
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/smo-book.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
http://web.cs.iastate.edu/~honavar/smo-svm.pdf
"""
import os
import sys
import urllib.request
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.datasets import make_blobs, make_circles
from sklearn.preprocessing import StandardScaler
CANCER_DATASET_URL = (
"http://archive.ics.uci.edu/ml/machine-learning-databases/"
"breast-cancer-wisconsin/wdbc.data"
)
class SmoSVM:
def __init__(
self,
train,
kernel_func,
alpha_list=None,
cost=0.4,
b=0.0,
tolerance=0.001,
auto_norm=True,
):
self._init = True
self._auto_norm = auto_norm
self._c = np.float64(cost)
self._b = np.float64(b)
self._tol = np.float64(tolerance) if tolerance > 0.0001 else np.float64(0.001)
self.tags = train[:, 0]
self.samples = self._norm(train[:, 1:]) if self._auto_norm else train[:, 1:]
self.alphas = alpha_list if alpha_list is not None else np.zeros(train.shape[0])
self.Kernel = kernel_func
self._eps = 0.001
self._all_samples = list(range(self.length))
self._K_matrix = self._calculate_k_matrix()
self._error = np.zeros(self.length)
self._unbound = []
self.choose_alpha = self._choose_alphas()
def fit(self):
K = self._k
state = None
while True:
try:
i1, i2 = self.choose_alpha.send(state)
state = None
except StopIteration:
print("Optimization done!\nEvery sample satisfy the KKT condition!")
break
y1, y2 = self.tags[i1], self.tags[i2]
a1, a2 = self.alphas[i1].copy(), self.alphas[i2].copy()
e1, e2 = self._e(i1), self._e(i2)
args = (i1, i2, a1, a2, e1, e2, y1, y2)
a1_new, a2_new = self._get_new_alpha(*args)
if not a1_new and not a2_new:
state = False
continue
self.alphas[i1], self.alphas[i2] = a1_new, a2_new
b1_new = np.float64(
-e1
- y1 * K(i1, i1) * (a1_new - a1)
- y2 * K(i2, i1) * (a2_new - a2)
+ self._b
)
b2_new = np.float64(
-e2
- y2 * K(i2, i2) * (a2_new - a2)
- y1 * K(i1, i2) * (a1_new - a1)
+ self._b
)
if 0.0 < a1_new < self._c:
b = b1_new
if 0.0 < a2_new < self._c:
b = b2_new
if not (np.float64(0) < a2_new < self._c) and not (
np.float64(0) < a1_new < self._c
):
b = (b1_new + b2_new) / 2.0
b_old = self._b
self._b = b
self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
for s in self.unbound:
if s == i1 or s == i2:
continue
self._error[s] += (
y1 * (a1_new - a1) * K(i1, s)
+ y2 * (a2_new - a2) * K(i2, s)
+ (self._b - b_old)
)
if self._is_unbound(i1):
self._error[i1] = 0
if self._is_unbound(i2):
self._error[i2] = 0
def predict(self, test_samples, classify=True):
if test_samples.shape[1] > self.samples.shape[1]:
raise ValueError(
"Test samples' feature length does not equal to that of train samples"
)
if self._auto_norm:
test_samples = self._norm(test_samples)
results = []
for test_sample in test_samples:
result = self._predict(test_sample)
if classify:
results.append(1 if result > 0 else -1)
else:
results.append(result)
return np.array(results)
def _check_obey_kkt(self, index):
alphas = self.alphas
tol = self._tol
r = self._e(index) * self.tags[index]
c = self._c
return (r < -tol and alphas[index] < c) or (r > tol and alphas[index] > 0.0)
def _k(self, i1, i2):
if isinstance(i2, np.ndarray):
return self.Kernel(self.samples[i1], i2)
else:
return self._K_matrix[i1, i2]
def _e(self, index):
"""
Two cases:
1:Sample[index] is non-bound,Fetch error from list: _error
2:sample[index] is bound,Use predicted value deduct true value: g(xi) - yi
"""
if self._is_unbound(index):
return self._error[index]
else:
gx = np.dot(self.alphas * self.tags, self._K_matrix[:, index]) + self._b
yi = self.tags[index]
return gx - yi
def _calculate_k_matrix(self):
k_matrix = np.zeros([self.length, self.length])
for i in self._all_samples:
for j in self._all_samples:
k_matrix[i, j] = np.float64(
self.Kernel(self.samples[i, :], self.samples[j, :])
)
return k_matrix
def _predict(self, sample):
k = self._k
predicted_value = (
np.sum(
[
self.alphas[i1] * self.tags[i1] * k(i1, sample)
for i1 in self._all_samples
]
)
+ self._b
)
return predicted_value
def _choose_alphas(self):
locis = yield from self._choose_a1()
if not locis:
return
return locis
def _choose_a1(self):
"""
Choose first alpha ;steps:
1:First loop over all sample
2:Second loop over all non-bound samples till all non-bound samples does not
voilate kkt condition.
3:Repeat this two process endlessly,till all samples does not voilate kkt
condition samples after first loop.
"""
while True:
all_not_obey = True
print("scanning all sample!")
for i1 in [i for i in self._all_samples if self._check_obey_kkt(i)]:
all_not_obey = False
yield from self._choose_a2(i1)
print("scanning non-bound sample!")
while True:
not_obey = True
for i1 in [
i
for i in self._all_samples
if self._check_obey_kkt(i) and self._is_unbound(i)
]:
not_obey = False
yield from self._choose_a2(i1)
if not_obey:
print("all non-bound samples fit the KKT condition!")
break
if all_not_obey:
print("all samples fit the KKT condition! Optimization done!")
break
return False
def _choose_a2(self, i1):
"""
Choose the second alpha by using heuristic algorithm ;steps:
1: Choose alpha2 which gets the maximum step size (|E1 - E2|).
2: Start in a random point,loop over all non-bound samples till alpha1 and
alpha2 are optimized.
3: Start in a random point,loop over all samples till alpha1 and alpha2 are
optimized.
"""
self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
if len(self.unbound) > 0:
tmp_error = self._error.copy().tolist()
tmp_error_dict = {
index: value
for index, value in enumerate(tmp_error)
if self._is_unbound(index)
}
if self._e(i1) >= 0:
i2 = min(tmp_error_dict, key=lambda index: tmp_error_dict[index])
else:
i2 = max(tmp_error_dict, key=lambda index: tmp_error_dict[index])
cmd = yield i1, i2
if cmd is None:
return
for i2 in np.roll(self.unbound, np.random.choice(self.length)):
cmd = yield i1, i2
if cmd is None:
return
for i2 in np.roll(self._all_samples, np.random.choice(self.length)):
cmd = yield i1, i2
if cmd is None:
return
def _get_new_alpha(self, i1, i2, a1, a2, e1, e2, y1, y2):
K = self._k
if i1 == i2:
return None, None
s = y1 * y2
if s == -1:
L, H = max(0.0, a2 - a1), min(self._c, self._c + a2 - a1)
else:
L, H = max(0.0, a2 + a1 - self._c), min(self._c, a2 + a1)
if L == H:
return None, None
k11 = K(i1, i1)
k22 = K(i2, i2)
k12 = K(i1, i2)
eta = k11 + k22 - 2.0 * k12
if eta > 0.0:
a2_new_unc = a2 + (y2 * (e1 - e2)) / eta
if a2_new_unc >= H:
a2_new = H
elif a2_new_unc <= L:
a2_new = L
else:
a2_new = a2_new_unc
else:
b = self._b
l1 = a1 + s * (a2 - L)
h1 = a1 + s * (a2 - H)
f1 = y1 * (e1 + b) - a1 * K(i1, i1) - s * a2 * K(i1, i2)
f2 = y2 * (e2 + b) - a2 * K(i2, i2) - s * a1 * K(i1, i2)
ol = (
l1 * f1
+ L * f2
+ 1 / 2 * l1 ** 2 * K(i1, i1)
+ 1 / 2 * L ** 2 * K(i2, i2)
+ s * L * l1 * K(i1, i2)
)
oh = (
h1 * f1
+ H * f2
+ 1 / 2 * h1 ** 2 * K(i1, i1)
+ 1 / 2 * H ** 2 * K(i2, i2)
+ s * H * h1 * K(i1, i2)
)
"""
# way 2
Use objective function check which alpha2 new could get the minimal
objectives
"""
if ol < (oh - self._eps):
a2_new = L
elif ol > oh + self._eps:
a2_new = H
else:
a2_new = a2
a1_new = a1 + s * (a2 - a2_new)
if a1_new < 0:
a2_new += s * a1_new
a1_new = 0
if a1_new > self._c:
a2_new += s * (a1_new - self._c)
a1_new = self._c
return a1_new, a2_new
def _norm(self, data):
if self._init:
self._min = np.min(data, axis=0)
self._max = np.max(data, axis=0)
self._init = False
return (data - self._min) / (self._max - self._min)
else:
return (data - self._min) / (self._max - self._min)
def _is_unbound(self, index):
if 0.0 < self.alphas[index] < self._c:
return True
else:
return False
def _is_support(self, index):
if self.alphas[index] > 0:
return True
else:
return False
@property
def unbound(self):
return self._unbound
@property
def support(self):
return [i for i in range(self.length) if self._is_support(i)]
@property
def length(self):
return self.samples.shape[0]
class Kernel:
def __init__(self, kernel, degree=1.0, coef0=0.0, gamma=1.0):
self.degree = np.float64(degree)
self.coef0 = np.float64(coef0)
self.gamma = np.float64(gamma)
self._kernel_name = kernel
self._kernel = self._get_kernel(kernel_name=kernel)
self._check()
def _polynomial(self, v1, v2):
return (self.gamma * np.inner(v1, v2) + self.coef0) ** self.degree
def _linear(self, v1, v2):
return np.inner(v1, v2) + self.coef0
def _rbf(self, v1, v2):
return np.exp(-1 * (self.gamma * np.linalg.norm(v1 - v2) ** 2))
def _check(self):
if self._kernel == self._rbf:
if self.gamma < 0:
raise ValueError("gamma value must greater than 0")
def _get_kernel(self, kernel_name):
maps = {"linear": self._linear, "poly": self._polynomial, "rbf": self._rbf}
return maps[kernel_name]
def __call__(self, v1, v2):
return self._kernel(v1, v2)
def __repr__(self):
return self._kernel_name
def count_time(func):
def call_func(*args, **kwargs):
import time
start_time = time.time()
func(*args, **kwargs)
end_time = time.time()
print(f"smo algorithm cost {end_time - start_time} seconds")
return call_func
@count_time
def test_cancel_data():
print("Hello!\nStart test svm by smo algorithm!")
if not os.path.exists(r"cancel_data.csv"):
request = urllib.request.Request(
CANCER_DATASET_URL,
headers={"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)"},
)
response = urllib.request.urlopen(request)
content = response.read().decode("utf-8")
with open(r"cancel_data.csv", "w") as f:
f.write(content)
data = pd.read_csv(r"cancel_data.csv", header=None)
del data[data.columns.tolist()[0]]
data = data.dropna(axis=0)
data = data.replace({"M": np.float64(1), "B": np.float64(-1)})
samples = np.array(data)[:, :]
train_data, test_data = samples[:328, :], samples[328:, :]
test_tags, test_samples = test_data[:, 0], test_data[:, 1:]
mykernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
al = np.zeros(train_data.shape[0])
mysvm = SmoSVM(
train=train_data,
kernel_func=mykernel,
alpha_list=al,
cost=0.4,
b=0.0,
tolerance=0.001,
)
mysvm.fit()
predict = mysvm.predict(test_samples)
score = 0
test_num = test_tags.shape[0]
for i in range(test_tags.shape[0]):
if test_tags[i] == predict[i]:
score += 1
print(f"\nall: {test_num}\nright: {score}\nfalse: {test_num - score}")
print(f"Rough Accuracy: {score / test_tags.shape[0]}")
def test_demonstration():
print("\nStart plot,please wait!!!")
sys.stdout = open(os.devnull, "w")
ax1 = plt.subplot2grid((2, 2), (0, 0))
ax2 = plt.subplot2grid((2, 2), (0, 1))
ax3 = plt.subplot2grid((2, 2), (1, 0))
ax4 = plt.subplot2grid((2, 2), (1, 1))
ax1.set_title("linear svm,cost:0.1")
test_linear_kernel(ax1, cost=0.1)
ax2.set_title("linear svm,cost:500")
test_linear_kernel(ax2, cost=500)
ax3.set_title("rbf kernel svm,cost:0.1")
test_rbf_kernel(ax3, cost=0.1)
ax4.set_title("rbf kernel svm,cost:500")
test_rbf_kernel(ax4, cost=500)
sys.stdout = sys.__stdout__
print("Plot done!!!")
def test_linear_kernel(ax, cost):
train_x, train_y = make_blobs(
n_samples=500, centers=2, n_features=2, random_state=1
)
train_y[train_y == 0] = -1
scaler = StandardScaler()
train_x_scaled = scaler.fit_transform(train_x, train_y)
train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
mykernel = Kernel(kernel="linear", degree=5, coef0=1, gamma=0.5)
mysvm = SmoSVM(
train=train_data,
kernel_func=mykernel,
cost=cost,
tolerance=0.001,
auto_norm=False,
)
mysvm.fit()
plot_partition_boundary(mysvm, train_data, ax=ax)
def test_rbf_kernel(ax, cost):
train_x, train_y = make_circles(
n_samples=500, noise=0.1, factor=0.1, random_state=1
)
train_y[train_y == 0] = -1
scaler = StandardScaler()
train_x_scaled = scaler.fit_transform(train_x, train_y)
train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
mykernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
mysvm = SmoSVM(
train=train_data,
kernel_func=mykernel,
cost=cost,
tolerance=0.001,
auto_norm=False,
)
mysvm.fit()
plot_partition_boundary(mysvm, train_data, ax=ax)
def plot_partition_boundary(
model, train_data, ax, resolution=100, colors=("b", "k", "r")
):
"""
We can not get the optimum w of our kernel svm model which is different from linear
svm. For this reason, we generate randomly distributed points with high desity and
prediced values of these points are calculated by using our tained model. Then we
could use this prediced values to draw contour map.
And this contour map can represent svm's partition boundary.
"""
train_data_x = train_data[:, 1]
train_data_y = train_data[:, 2]
train_data_tags = train_data[:, 0]
xrange = np.linspace(train_data_x.min(), train_data_x.max(), resolution)
yrange = np.linspace(train_data_y.min(), train_data_y.max(), resolution)
test_samples = np.array([(x, y) for x in xrange for y in yrange]).reshape(
resolution * resolution, 2
)
test_tags = model.predict(test_samples, classify=False)
grid = test_tags.reshape((len(xrange), len(yrange)))
ax.contour(
xrange,
yrange,
np.mat(grid).T,
levels=(-1, 0, 1),
linestyles=("--", "-", "--"),
linewidths=(1, 1, 1),
colors=colors,
)
ax.scatter(
train_data_x,
train_data_y,
c=train_data_tags,
cmap=plt.cm.Dark2,
lw=0,
alpha=0.5,
)
support = model.support
ax.scatter(
train_data_x[support],
train_data_y[support],
c=train_data_tags[support],
cmap=plt.cm.Dark2,
)
if __name__ == "__main__":
test_cancel_data()
test_demonstration()
plt.show()